Control and Performance of a Cascaded H-Bridge Photovoltaic Power System

Nathan Daniel Marks

B.E. (Elec.)(Hons. 1)

April 2016

A thesis submitted to embody the research carried out to fulfil the requirements for the degree of:

Doctor of Philosophy

- in Electrical Engineering
- at The University of Newcastle

Callaghan, NSW, 2308, Australia

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Nathan Daniel Marks

B.E. (Elec.)(Hons. 1)

April 2016

Acknowledgements

The work presented in this thesis was undertaken during the author's Ph.D. candidature at the University of Newcastle, Australia in the School of Electrical Engineering and Computer Science.

I would firstly like to thank my wife Mandy for the incredible and unwavering support you offered throughout this PhD. You always seemed to know what to say when it wasn't going well and you kept me grounded. I was lucky to have such strong support and I thank you for understanding when the PhD seemed more important.

I would like to acknowledge the considerable support of my primary supervisor Doctor Terrence Summers. You and Bob approached me almost 5 years ago and suggested I do a PhD and I haven't looked back. You have provided me with the right advice and expertise when I needed it. I'm thankful for the teaching opportunities offered to me and the memorable experiences in attending many international conferences with you that wouldn't have been possible without your support. Ultimately, I believe this PhD would have been far less enjoyable without you as a supervisor.

I would also like to thank my secondary supervisor Professor Bob Betz. Your expertise, experience and friendship have been invaluable throughout my studies.

Thank you to my family and friends. It probably wasn't easy to understand what I was doing or why I was doing it, but I appreciate your understanding and support in the many forms it was offered.

Thank you to my fellow power electronics postgraduate students for their friendship and lively, constructive discussions on many different topics.

Contents

Α	Abstract			x	xix
Ν	Nomenclature				xxi
1	Inti	roduct	ion		1
	1.1	Princi	ples of Photovoltaic Power Conversion	•	3
		1.1.1	Characteristics of Photovoltaic Modules		6
		1.1.2	Maximum Power Point Tracking		8
	1.2	Gener	al PV System Topologies	•	11
		1.2.1	Inverter Topologies	•	12
		1.2.2	Centralised Photovoltaic Power System Topology	•	17
		1.2.3	String Photovoltaic Power System Topology		18
		1.2.4	Multistring Photovoltaic Power System Topology	•	20
		1.2.5	Conclusions from Basic Inverter Topologies		21
	1.3	Multil	evel Converter Topologies	•	22
		1.3.1	Diode Clamped Converter	•	22
		1.3.2	Flying Capacitor Converter	•	25
		1.3.3	Cascaded H-Bridge Converter	•	28
		1.3.4	Modular Multilevel Converter		30

		1.3.5	Suitability of Multilevel Topologies for PV Power Systems	32
	1.4	Multil	level Converter Photovoltaic Power System Topologies	36
		1.4.1	Diode Clamped Converter Topologies	36
		1.4.2	Cascaded H-Bridge Topologies	39
	1.5	Contro	ol and Modulation Strategies	42
		1.5.1	Control Strategies	43
		1.5.2	Modulation Strategies	51
	1.6	Thesis	s Scope and Contributions	56
	1.7	Thesis	s Outline	58
2	Ana	alysis o	of the Cascaded H-Bridge PV Topology	59
	2.1	Introd		59
	2.2	Power	· Flow Analysis	63
	2.2 0.2	Contr		65
	2.0	Contro		00
		2.3.1	Power Control	66
		2.3.2	Converter Control	71
	2.4	Phase	Power Imbalance	77
	2.5	Indivi	dual Cell Imbalance and Voltage Regulation	83
		2.5.1	Analysis of Cell Imbalance and Capacitor Voltage Regulation	87
		2.5.2	Conclusions	94
	2.6	React	ive Power Requirements/Minimum Number of PV Supplied Cells	94
		2.6.1	The Real and Reactive Power Ratio	95
		2.6.2	Minimum Number of H-Bridges with PV Arrays Connected	100
		2.6.3	Minimum Number of H-Bridges with PV Arrays Connected with	
			Restraints on Switching Combinations	103

		2.6.4	Reactive Power Requirements with Restraints on Switching Com-	
			binations	107
	2.7	Maxin	num Power Point Tracking	120
		2.7.1	Instantaneous PV Array Power	121
		2.7.2	Effect of Power and Voltage Ripple on MPPT Design and Perfor-	
			mance	123
		2.7.3	Impact on Output Current Magnitude	127
		2.7.4	Impacts of Changes in Irradiance	129
		2.7.5	Conclusions	131
	2.8	Chapt	er Conclusions	131
3	Con	ntrol D	evelopments for the Cascaded H-Bridge PV Topology	135
	3.1	Introd	luction	135
	3.2	Phase	Shifted Perturb and Observe Maximum Power Point Tracking	136
	3.3	PV A	rray Power Estimation	146
	3.4	Curren	nt Sensorless Ripple Correlation Maximum Power Point Tracking	152
	3.5	Comb	ining PV Array Power Estimation with RC-MPPT	156
	3.6	Comp	arisons to Phase Shifted Carrier PWM Based Implementations	156
	3.7	Chapt	er Conclusions	159
4	\mathbf{Sim}	ulatio	n Studies	161
	4.1	Introd	luction	161
		4.1.1	The Saber Simulation	162
		4.1.2	Modelling the PV Arrays	164
	4.2	Analy	sing the Performance	166
		4.2.1	Converter Output Currents	166
		1. . . 1	construct output output output is in the transmission of transmission	100

	4.2.2	Nominal Capacitor Values
	4.2.3	Variable Capacitor Values Throughout the Phase Leg 167
	4.2.4	Performance Indicators
4.3	Casca	ded H-Bridge Photovoltaic Power System Configuration 170
4.4	Start-	Up Sequencing and Nominally Balanced Power
4.5	Phase	and Cell Power Imbalances
	4.5.1	Interphase Power Imbalance
	4.5.2	Intercell Power Imbalance
4.6	Invest	igating Tradeoffs Between Capacitor Voltage Regulation and Switch-
	ing Tr	ansitions
4.7	Reacti	ive Power Requirements/Minimum Number of PV Supplied Cells 190
4.8	PV A	rray Power Estimation
	4.8.1	Implementation of Estimation Technique
	4.8.2	Performance of the Estimation Technique
4.9	Pertur	b and Observe Maximum Power Point Tracking
4.10	Phase	Shifted P&O MPPT 208
	4.10.1	Comparison to Standard P&O MPPT 216
4.11	Curren	nt Sensorless Ripple Correlation MPPT
	4.11.1	Implementation of the RC-MPPT Scheme
	4.11.2	Performance of the RC-MPPT Scheme
	4.11.3	Comparison to P&O MPPT
4.12	Power	Estimation with RC-MPPT
4.13	Chapt	er Conclusions

5	Exp	perimental Results	239
	5.1	Introduction	239
	5.2	Practical Considerations and Test Conditions	241
	5.3	Phase Power Imbalances	243
	5.4	Cell Power Imbalances	252
	5.5	Reactive Power Requirements/Minimum Number of PV Supplied Cells	256
	5.6	PV Array Power Estimation	262
	5.7	Chapter Conclusions	268
6	Cor	clusions and Contributions	269
U	6.1	Future Work	200
	0.1		215
Α	Exp	perimental System	277
	A.1	Introduction	277
	A.2	Hardware Configuration	278
		A.2.1 Converter Hardware	278
		A.2.2 PV Modules and Current Measurement Hardware	286
	A.3	Software Configuration	286
		A.3.1 Converter Control Software Structure	286
		A.3.2 PV Current Measurement Software	289
в	Mo	delling of Capacitor Voltage Regulation	291
	B.1	Introduction	291
С	Ext	ending the Prediction Horizon of Finite Control Set Model Predic	- -
	tive	Control	295
	C.1	Introduction	295

xi

	C.2	Extending the Prediction Horizon
	C.3	Simulation Results
		C.3.1 Ideal System Conditions
		C.3.2 Capacitor Voltage Balancing Included in Cost Function 299
		C.3.3 Voltage Sag at Point of Common Coupling
		C.3.4 Harmonic Pollution in Grid Voltage
	C.4	Experimental Results
	C.5	Applicability to PV Power Systems
	C.6	Contributions & Conclusions
Б	Don	and Dublished 200
D	гар	ers Fublished 509
	D.1	Photovoltaic Power Systems: A Review of Topologies, Converters and
		Controls
	D.2	Finite Control Set Model Predictive Control with Increased Prediction
		horizon for a 5 Level Cascaded H-Bridge StatCom
	D.3	Challenges for Capacitor Voltage Balancing in a Cascaded H-Bridge Stat-
		Com Utilising Finite Control Set Model Predictive Control
	D.4	Control of a 19 Level Cascaded H-Bridge Multilevel Converter Photo-
		voltaic System
	D.5	Current Sensor-less Control of a Cascaded H-Bridge Photovoltaic System 347
	D.6	Reactive Power Requirements for Cascaded H-Bridge Photovoltaic Systems 355
	D.7	Phase Shifted Maximum Power Point Tracking in a Cascaded H-Bridge
		Photovoltaic Power System
	D.8	Current Sensorless Maximum Power Point Tracking in a Cascaded H-
		Bridge Photovoltaic Power System

List of Figures

1.1	Equivalent electrical model of a solar cell	5
1.2	Equivalent electrical model of a practical photovoltaic device \ldots	5
1.3	Current vs. voltage characteristic of a solar cell	6
1.4	Power vs. voltage characteristic of a solar cell	7
1.5	Current vs. voltage characteristic for variations in solar irradiation	7
1.6	Current vs. voltage characteristic for variations in the operating temperature	8
1.7	$\ensuremath{P\&O}$ MPPT operating points on the power vs. voltage characteristic	10
1.8	Three phase, 2 level voltage source converter with a star connected load $% \mathcal{L}^{(2)}$.	13
1.9	Three phase, 2 level voltage source converter connected to the grid \ldots .	14
1.10	H5 inverter based photovoltaic power system topology	15
1.11	HERIC inverter based photovoltaic power system topology	16
1.12	Full bridge with DC bypass inverter based photovoltaic power system	
	topology	17
1.13	Centralised inverter based photovoltaic power system structure $\ . \ . \ .$.	19
1.14	String inverter based photovoltaic power system structure	19
1.15	Multistring inverter based photovoltaic power system structure \ldots .	20
1.16	Single phase 5-level diode clamped converter	24
1.17	Single phase 5-level flying capacitor converter	26

1.18	Single phase 5-level cascaded H-Bridge converter	31
1.19	Single phase 3-level modular multilevel converter	33
1.20	Diode clamped converter with single string configuration	37
1.21	Diode clamped converter with multistring configuration	39
1.22	Cascaded H-Bridge converter with single string configuration	40
1.23	Cascaded H-Bridge converter with multistring configuration	42
1.24	Simple model of a grid connected converter system	45
1.25	Implementation of PSC-PWM in a cascaded H-Bridge converter	53
1.26	Possible voltage space vectors for a 2L-VSC	55
2.1	Circuit diagram of the grid connected cascaded H-Bridge photovoltaic	
	power system	60
2.2	Block diagram of the cascaded H-Bridge photovoltaic power system control	
	scheme	66
2.3	System Timing Diagram	71
2.4	Simulation results for cell imbalance investigation with balanced cell pow-	
	ers and voltages.	88
2.5	Simulation results for cell imbalance investigation with one dominant power	
	cell and voltage regulation maintained	89
2.6	Simulation results for cell imbalance investigation with one dominant power	
	cell and voltage regulation not maintained in the highest power H-Bridge.	90
2.7	Simulation results for cell imbalance investigation with two dominant power	
	cells and voltage regulation maintained. \ldots \ldots \ldots \ldots \ldots \ldots \ldots	91
2.8	Simulation results for cell imbalance investigation with two dominant power	
	cells and voltage regulation not maintained in the highest power H-Bridges.	92
2.9	Converter voltage and output current waveforms demonstrating switching	
	times for Case 1 when exporting real power and absorbing inductive vars	111

2.10	Converter voltage and output current waveforms demonstrating switching	
	times for Case 2 when exporting real power and absorbing inductive vars.	116
2.11	P-V characteristic operating in the vicinity of the maximum power point .	123
2.12	$\ensuremath{P\&O}$ MPPT scheme getting confused by the change in the irradiance $\ .$.	130
3.1	Phase leg voltage reference for synchronously perturbed three point oscil- lation in each H-Bridge	138
3.2	Phase leg voltage reference for staggered perturbation three point oscilla-	
	tion in each H-Bridge	139
3.3	Three point oscillation around the MPP	140
3.4	Phase leg voltage reference for staggered perturbation four point oscillation	
	in each H-Bridge	143
3.5	Flowchart of the proposed PS-P&O MPPT scheme	145
4.1	Saber simulation schematic top level overview	165
4.2	Simulation results for the CHB PV power system showing H-Bridge ca-	
	pacitor voltages during start-up and balanced PV phase power operation	
	- Top plot: Phase 'a' voltages, Middle plot: Phase 'b' voltages, Bottom	
	plot: Phase 'c' voltages	172
4.3	Simulation results for the CHB PV power system showing start-up se-	
	quencing and balanced PV phase powers - Top plot: Measured and de-	
	manded reactive power, Bottom plot: Three phase generated PV power	173
4.4	Simulation results for the CHB PV power system showing start-up se-	
	quencing and balanced PV phase powers - Top plot: Three phase PV	

generated powers, Bottom plot: Phase 'a' H-Bridge PV powers. 174

4.5	Simulation results for the CHB PV power system showing start-up se-	
	quencing and balanced PV phase powers - Top plot: Phase 'a' grid voltage	
	and phase 'a' measured output current, Middle plot: Three phase mea-	
	sured output currents, Bottom plot: Phase 'a' measured and reference	
	currents	175
4.6	Simulation results for the CHB PV power system showing start-up se-	
	quencing and balanced PV phase powers zoomed on PV connected period	
	- Top plot: Phase 'a' grid voltage and phase 'a' measured output current,	
	Middle plot: Three phase measured output currents, Bottom plot: Phase	
	'a' measured and reference currents	176
4.7	Simulation results for the CHB PV power system with unbalanced PV	
	phase powers - Top plot: Phase 'a' H-Bridge capacitor voltages, Middle	
	plot: Phase 'b' H-Bridge capacitor voltages, Bottom plot: Phase 'c' H-	
	Bridge capacitor voltages.	178
4.8	Simulation results for the CHB PV power system with unbalanced PV	
	phase powers - Top plot: Three phase PV generated powers, Bottom plot:	
	PV powers for the top H-Bridge in each phase	179
4.9	Simulation results for the CHB PV power system with unbalanced PV	
	phase powers - Top plot: Phase 'a' grid voltage and phase 'a' measured	
	output current, Middle plot: Three phase measured output currents, Bot-	
	tom plot: Phase 'a' measured and reference currents	180
4.10	Simulation results for the CHB PV power system with unbalanced PV	
	phase powers - Top plot: Converter phase voltages, Middle plot: Effective	
	converter output voltages, Bottom plot: Floating star point voltage	181
4.11	Simulation results for the CHB PV power system with unbalanced PV cell	
	powers - Top plot: Phase 'a' H-Bridge capacitor voltages, Middle plot:	
	Phase 'b' H-Bridge capacitor voltages, Bottom plot: Phase 'c' H-Bridge	
	capacitor voltages.	182

- 4.12 Simulation results for the CHB PV power system with unbalanced PV cell powers Top plot: Phase 'a' H-Bridge PV powers, Middle plot: Phase 'b' H-Bridge PV powers, Bottom plot: Phase 'c' H-Bridge PV powers. 183
- 4.13 Simulation results for the CHB PV power system with unbalanced PV cell powers Top plot: Phase 'a' grid voltage and phase 'a' measured output current, Middle plot: Three phase measured output currents, Bottom plot: Phase 'a' measured and reference currents.
 184
- 4.14 Simulation results for the CHB PV power system with weighting factor $\alpha_2 = 0.0$ and $C_{nom} = 13200 \mu F$ - Top plot: H-Bridge capacitor voltages for phase 'a', Bottom plot: Average number of transitions on phase 'a' devices. 185
- 4.15 Simulation results for the CHB PV power system with weighting factor $\alpha_2 = 0.0$ and $C_{nom} = 5000 \mu F$ - Top plot: H-Bridge capacitor voltages for phase 'a', Bottom plot: Average number of transitions on phase 'a' devices. 186
- 4.17 Simulation results for the CHB PV power system with weighting factor $\alpha_2 = 15.0$ and $C_{nom} = 5000 \mu F$ - Top plot: H-Bridge capacitor voltages for phase 'a', Bottom plot: Average number of transitions on phase 'a' devices. 188

- 4.21 Simulation results for the CHB PV power system implementing power estimation in observation mode with an operating point below the MPP at high irradiance Top plot: Estimated vs. actual PV power in H-Bridge 1 of phase 'a', Middle plot: Estimated vs. actual total phase 'a' PV power, Bottom plot: Error between actual and estimated phase 'a' PV power. . . 198
- 4.22 Simulation results for the CHB PV power system implementing power estimation in observation mode with an operating point at the MPP at high irradiance - Top plot: Estimated vs. actual PV power in H-Bridge 1 of phase 'a', Middle plot: Estimated vs. actual total phase 'a' PV power, Bottom plot: Error between actual and estimated phase 'a' PV power. . . 199
- 4.23 Simulation results for the CHB PV power system implementing power estimation in observation mode with an operating point at the MPP at low irradiance - Top plot: Estimated vs. actual PV power in H-Bridge 1 of phase 'a', Middle plot: Estimated vs. actual total phase 'a' PV power, Bottom plot: Error between actual and estimated phase 'a' PV power. . . 200

4.24	Simulation results for the CHB PV power system implementing power	
	estimation in observation mode with an operating point below the MPP	
	at high irradiance and nominal capacitance variation of $\pm 20\%$ - Top plot:	
	Actual PV array powers for phase 'a' H-Bridges, Bottom plot: Estimated	
	PV array powers for phase 'a' H-Bridges.	201
4.25	Simulation results for the CHB PV power system implementing power	
	estimation in observation mode with an operating point below the MPP	
	at high irradiance and nominal capacitance variation of $\pm 20\%$ - Top plot:	
	Estimated vs. actual total phase 'a' PV array power, Bottom plot: Error	
	between actual and estimated phase 'a' PV array power	202
4.26	Simulation results for the CHB PV power system showing phase 'a' H-	
	Bridge capacitor voltages while implementing PS-P&O MPPT with high	
	irradiance in each PV array - Top plot: H-Bridges 1-3, Top middle plot:	
	H-Bridges 4-6, Bottom middle plot: H-Bridges 7-9, Bottom plot: Phase	
	leg a voltage reference	209
4.27	Simulation results for the CHB PV power system while implementing PS-	
	P&O MPPT with high irradiance in each PV array - Top plot: Phase 'a'	
	total PV power, Bottom plot: Phase 'a' measured and reference currents.	210
4.28	Simulation results for the CHB PV power system showing phase 'a' H-	
	Bridge capacitor voltages while implementing PS-P&O MPPT with a step	
	change in irradiance at 2.825s- Top plot: H-Bridges 1-3, Top middle plot:	
	H-Bridges 4-6, Bottom middle plot: H-Bridges 7-9, Bottom plot: Phase	
	leg a voltage reference	211
4.29	Simulation results for the CHB PV power system while implementing PS-	
	$\ensuremath{P\&O}$ MPPT with a step change in irradiance at 2.825s - Top plot: Phase	
	'a' total PV power, Bottom plot: Phase 'a' measured and reference currents.	214

4.31	Simulation results for the CHB PV power system showing estimated pro-	
	portional power difference while implementing RC-MPPT with high irra-	
	diance in each PV array	218
4.32	Simulation results for the CHB PV power system showing H-Bridge capac-	
	itor voltages while implementing RC-MPPT with high irradiance in each	
	PV array - Top plot: Phase 'a' voltages, Middle plot: Phase 'b' voltages,	
	Bottom plot: Phase 'c' voltages.	219
4.33	Simulation results for the CHB PV power system showing H-Bridge PV	
	array powers while implementing RC-MPPT with high irradiance in each	
	PV array - Top plot: Phase 'a' powers, Middle plot: Phase 'b' powers,	
	Bottom plot: Phase 'c' powers	220
4.34	Simulation results for the CHB PV power system showing three phase	
	total PV powers while implementing RC-MPPT with high irradiance in	
	each PV array.	221
4.35	Simulation results for the CHB PV power system while implementing RC-	
	MPPT with high irradiance in each PV array - Top plot: Three phase	
	measured output currents, Bottom plot: Phase 'a' measured and reference	
	currents	222
4.36	Simulation results for the CHB PV power system showing H-Bridge ca-	
	pacitor voltages while implementing RC-MPPT with a step change in ir-	
	radiance at 1.5s - Top plot: Phase 'a' voltages, Middle plot: Phase 'b'	
	voltages, Bottom plot: Phase 'c' voltages	224
4.37	Simulation results for the CHB PV power system showing H-Bridge PV	
	array powers while implementing RC-MPPT with a step change in irradi-	
	ance at 1.5s - Top plot: Phase 'a' powers, Middle plot: Phase 'b' powers,	
	Bottom plot: Phase 'c' powers	225
4.38	Simulation results for the CHB PV power system showing three phase	
	total PV powers while implementing RC-MPPT with a step change in	
	irradiance at 1.5s.	226

4.39	Simulation results for the CHB PV power system while implementing RC-	
	MPPT with a step change in irradiance at $1.5s$ - Top plot: Three phase	
	measured output currents, Bottom plot: Phase 'a' measured and reference	
	currents	226
4.40	Simulation results for the CHB PV power system while implementing RC-	
	MPPT with a step change in irradiance at 2.5s - Top plot: Phase 'a'	
	H-Bridge capacitor voltages, Bottom plot: Three phase total PV powers	227
4.41	Simulation results for the CHB PV power system showing phase 'a' H-	
	Bridge PV array powers while implementing RC-MPPT with a step change $% \mathcal{A}$	
	in irradiance at 2.5s - Top plot: H-Bridges $1 - 4$, Top middle plot: H-	
	Bridges 5 – 7, Bottom middle plot: H-Bridge 8, Bottom plot: H-Bridge	
	9	228
4.42	Simulation results for the CHB PV power system while implementing RC-	
	MPPT with a step change in irradiance at $2.5s$ - Top plot: Three phase	
	measured output currents, Bottom plot: Phase 'a' measured and reference	
	currents	229
4.43	Simulation results for the CHB PV power system while implementing	
	power estimation and RC-MPPT with high irradiance in each PV array -	
	Top plot: Phase 'a' H-Bridge capacitor voltages, Bottom plot: Phase 'a'	
	H-Bridge PV array powers.	231
4.44	Simulation results for the CHB PV power system while implementing	
	power estimation and RC-MPPT with high irradiance in each PV array	
	- Top plot: Phase 'a' actual and estimated PV array power, Middle plot:	
	Three phase total PV array powers, Bottom plot: Three phase measured	
	output currents.	232
4.45	Simulation results for the CHB PV power system while implementing	
	power estimation and RC-MPPT with a step change in irradiance at $1.51s$	
	- Top plot: Phase 'a' H-Bridge capacitor voltages, Bottom plot: Phase 'a'	
	H-Bridge PV array powers.	233

4.46	Simulation results for the CHB PV power system while implementing	
	power estimation and RC-MPPT with a step change in irradiance at $1.51s$	
	- Top plot: Phase 'a' actual and estimated PV array power, Middle plot:	
	Three phase total PV array powers, Bottom plot: Three phase measured	
	output currents.	234
4.47	Simulation results for the CHB PV power system while implementing	
	power estimation and RC-MPPT with step changes in irradiance at $2.0s$	
	- Top plot: Phase 'a' H-Bridge capacitor voltages, Middle plot: Phase 'b'	
	H-Bridge capacitor voltages, Bottom plot: Phase 'a' H-Bridge capacitor	
	voltages.	235
4.48	Simulation results for the CHB PV power system while implementing	
	power estimation and RC-MPPT with step changes in irradiance at $2.0s$ -	
	Top plot: PV array powers for phase 'a' H-Bridges $1-4$, Top middle plot:	
	PV array powers for phase 'a' H-Bridges $5-7$, Bottom middle plot: PV	
	array power for phase 'a' H-Bridge 8, Bottom plot: PV array power for	
	phase 'a' H-Bridge 9	236
4.49	Simulation results for the CHB PV power system while implementing	
	power estimation and RC-MPPT with step changes in irradiance at 2.0 s	
	- Top plot: Phase 'a' actual and estimated PV array power, Middle plot:	
	Three phase total PV array powers, Bottom plot: Three phase measured	
	output currents.	236
F 1		
5.1	Block diagram of the 19-level, 415V Cascaded H-Bridge photovoltaic power	
5.1	Block diagram of the 19-level, 415V Cascaded H-Bridge photovoltaic power system	240
5.1 5.2	Block diagram of the 19-level, 415V Cascaded H-Bridge photovoltaic power system	240
5.1 5.2	Block diagram of the 19-level, 415V Cascaded H-Bridge photovoltaic power system	240
5.1 5.2	Block diagram of the 19-level, 415V Cascaded H-Bridge photovoltaic power system	240
5.1	Block diagram of the 19-level, 415V Cascaded H-Bridge photovoltaic power system	240 244
5.15.25.3	Block diagram of the 19-level, 415V Cascaded H-Bridge photovoltaic power system	240 244

5.4	Experimental results with unbalanced PV phase powers and low reactive	
	power demand, zoomed - Top plot: Capacitor voltages for H-Bridges 1	
	and 2 in phase 'a', Middle plot:Capacitor voltages for H-Bridges 1 and 2 $$	
	in phase 'b', Bottom plot: Capacitor voltages for H-Bridges 1 and 2 in	
	phase 'c'	245
5.5	Experimental results with unbalanced PV phase powers and low reactive	
	power demand showing zoomed three phase measured PV powers. $\ . \ . \ .$	246
5.6	Experimental results with unbalanced PV phase powers and low reactive	
	power demand showing zoomed three phase currents	247
5.7	Experimental results with unbalanced PV phase powers and low reactive	
	power demand, zoomed - Top plot: Measured PV array powers for H-	
	Bridge 1 in phase 'a' and 'b', Middle plot: Measured output current for	
	phase 'a' and measured grid voltage for phase 'a', Bottom plot: Measured	
	instantaneous power for phase 'a'.	247
5.8	Experimental results with unbalanced PV phase powers and high reactive	
	power demand - Top plot: Capacitor voltages for H-Bridges 1 and 2 in	
	phase 'a', Middle plot:Capacitor voltages for H-Bridges 1 and 2 in phase	
	'b', Bottom plot: Capacitor voltages for H-Bridges 1 and 2 in phase 'c'	248
5.9	Experimental results with unbalanced PV phase powers and high reactive	
	power demand showing three phase measured PV powers	249
5.10	Experimental results with unbalanced PV phase powers and high reactive	
	power demand, zoomed - Top plot: Capacitor voltages for H-Bridges 1	
	and 2 in phase 'a', Middle plot: Capacitor voltages for H-Bridges 1 and 2 $$	
	in phase 'b', Bottom plot: Capacitor voltages for H-Bridges 1 and 2 in	
	phase 'c'	249
5.11	Experimental results with unbalanced PV phase powers and high reactive	
	power demand showing zoomed three phase measured PV powers. $\ . \ . \ .$	250
5.12	Experimental results with unbalanced PV phase powers and high reactive	
	power demand showing three phase currents.	250

5.13 Experimental results with unbalanced PV phase powers and high reactive
power demand, zoomed - Top plot: Measured PV array powers for H-
Bridge 1 in phase 'a' and 'b', Middle plot: Measured output current for
phase 'a' and measured grid voltage for phase 'a', Bottom plot: Measured
instantaneous power for phase 'a'
5.14 Experimental results showing H-Bridge capacitor voltages $1-6$ for phase
'a' with unbalanced PV phase powers and individual capacitor voltage
targets
5.15 Experimental results showing three phase measured PV powers with un-
balanced PV phase powers and individual capacitor voltage targets 253 $$
5.16 Experimental results showing H-Bridge capacitor voltages $1-6$ for phase
'a' with unbalanced PV phase powers and individual capacitor voltage
targets, zoomed. $\ldots \ldots 254$
5.17 Experimental results showing three phase measured PV powers with un-
balanced PV phase powers and individual capacitor voltage targets, zoomed. 254 $$
5.18 Experimental results showing three phase output currents with unbalanced
PV phase powers and individual capacitor voltage targets, zoomed 255
5.19 Experimental results with unbalanced PV phase powers and individual ca-
pacitor voltage targets, zoomed - Top plot: Measured PV array powers for
H-Bridge 1 in phase 'a' and 'b', Middle plot: Measured output current for
phase 'a' and measured grid voltage for phase 'a', Bottom plot: Measured
instantaneous power for phase 'a'
5.20 Experimental results showing H-Bridge capacitor voltages $1-6$ for phase
'a' with a single H-Bridge supplied with a PV array and low reactive power
demand
5.21 Experimental results showing three phase measured PV powers with a
single H-Bridge supplied with a PV array and low reactive power demand. 258
5.22 Experimental results showing three phase output currents with a single
H-Bridge supplied with a PV array and low reactive power demand 258

5.23	Experimental results with a single H-Bridge supplied with a PV array and
	low reactive power demand - Top plot: Measured PV array powers for
	H-Bridge 1 in phase 'a' and 'b', Middle plot: Measured output current for
	phase 'a' and measured grid voltage for phase 'a', Bottom plot: Measured
	instantaneous power for phase 'a'
5.24	Experimental results showing H-Bridge capacitor voltages $1-6$ for phase
	'a' with a single H-Bridge supplied with a PV array and high reactive
	power demand
5.25	Experimental results showing three phase measured PV powers with a
	single H-Bridge supplied with a PV array and high reactive power demand. 261
5.26	Experimental results showing three phase output currents with a single
	H-Bridge supplied with a PV array and high reactive power demand 261 $$
5.27	Experimental results with a single H-Bridge supplied with a PV array and
	high reactive power demand - Top plot: Measured PV array powers for
	H-Bridge 1 in phase 'a' and 'b', Middle plot: Measured output current for
	phase 'a' and measured grid voltage for phase 'a', Bottom plot: Measured
	instantaneous power for phase 'a'
5.28	Timing diagram for power estimation in the experimental system 264
5.29	Experimental results for first estimation technique with a single H-Bridge
	supplied with a PV array and high reactive power demand - Top plot: Ca-
	pacitor voltage for H-Bridge 1 in phase 'a', Bottom plot: Actual, measured
	and estimated power for H-Bridge 1 in phase 'a'
5.30	Experimental results for second estimation technique with a single H-
	Bridge supplied with a PV array and high reactive power demand - Top
	plot: Capacitor voltage for H-Bridge 1 in phase 'a', Bottom plot: Actual,
	measured and estimated power for H-Bridge 1 in phase 'a'
A.1	Block diagram of the 19-level 415 V Cascaded H-Bridge experimental system. 278 $$
A.2	The experimental setup in the laboratory

A.3	Block diagram of the H-bridge module used in the 19-level CHB-PV power	
	system.	280
A.4	The phase controller board	282
A.5	Block diagram of phase controller connections.	282
A.6	Block diagram of the interface board	283
A.7	The interface board.	284
A.8	Block diagram of the data acquisition board showing connections. $\ . \ . \ .$	285
A.9	The data acquisition board	285
A.10	Block diagram of the software structure	288
A.11	Thread structure of the front panel server process	289
C.1	Switching transitions vs. λ_{SW} for $N=1$ and $N=2$ with ideal system.	299
C.2	Switching transitions vs. λ_{SW} for $N = 1$ and $N = 2$ with capacitor	
	balancing.	300
C.3	Switching transitions vs. λ_{SW} for $N=1$ and $N=2$ with voltage sag. $\ .$.	301
C.4	Switching transitions vs. λ_{SW} for $N = 1$ and $N = 2$ with harmonics in	
	voltage	302
C.5	Experimental results showing 'a' phase capacitor voltages (top) and 'a'	
	phase transitions (bottom) for $N = 1$	303
C.6	Experimental results showing 'a' phase capacitor voltages (top) and 'a'	
	phase transitions (bottom) for $N = 2$	304
C.7	Experimental results showing 'a' phase current tracking for $N=1$ $\ .$	305
C.8	Experimental results showing 'a' phase current tracking for $N=2$	305

List of Tables

2.1	PV array characteristics used for MATLAB simulation of cell imbalance	88
4.1	Voltage deviations and average number of switching transitions for $C_{nom} = 13200\mu F$	189
4.2	Voltage deviations and average number of switching transitions for $C_{nom} = 5000 \mu F$	189
4.3	Maximum Power Point Tracking performance for measured PV array power with moving average filter on capacitor voltages and powers	204
4.4	Maximum Power Point Tracking performance for measured PV array power with low pass filter on capacitor voltages and powers	205
4.5	Maximum Power Point Tracking performance for estimated PV array power with moving average filter on capacitor voltages and powers	206
4.6	Maximum Power Point Tracking performance for estimated PV array power with low pass filter on capacitor voltages and powers	207
C.1	System Parameters	298

Abstract

This thesis presents the control and performance of a Cascaded H-Bridge photovoltaic power system. The cascaded H-Bridge multilevel converter offers a number of attractive features for use in photovoltaic power systems. They provide opportunities for increases in efficiency, superior tracking of the maximum available power and direct connection to higher voltages. This system topology is a relatively immature technology and a number of key areas exist for research. In particular, the individual maximum power point tracking performance requires further analysis and development, the operation of the system in the presence of variable power generation in the photovoltaic arrays requires further investigation and the ability of the system to maintain operation under different array configurations is an interesting area for investigation.

The details and the performance of a heuristic model predictive control scheme are presented, as well as the control techniques used to compensate for the power variability. The operation of the system when some arrays have zero power is also investigated. Two new maximum power point tracking techniques are proposed and the performance relative to the established Perturb and Observe technique is evaluated. A photovoltaic array current sensorless technique is also developed to exploit the switching characteristics produced by the model predictive control scheme.

Finally, simulation and experimental results are presented that evaluate and validate the performance of the proposed control techniques. The results show that the proposed control techniques offer excellent performance.

Nomenclature

$lpha_0$	Angle of the injected zero sequence voltage, page 81
Δv_{MPPT}	Voltage perturbation size , page 123
ω_0	Fundamental system frequency in rad/s, page 44
\underline{i}_{k+1}	Predicted instantaneous current vector at the end of the control in- terval from $kT \to (k+1)T$, page 50
\underline{i}_{k+1}^*	Reference instantaneous current vector at the end of the control in- terval from $kT \to (k+1)T$, page 50
\underline{i}_P^*	Demanded current vector for real power, page 66
\underline{i}_Q^*	Demanded current vector for reactive power, page 66
\underline{v}_{k+1}	Applied voltage vector for the interval $kT \rightarrow (k+1)T$, page 49
C_k	Nominal capacitance of the k th H-Bridge, page 76
f_{MPPT}	MPPT update frequency , page 123
i_q	Instantaneous synchronously rotating frame q axis current, page 44
i_{cap}	H-Bridge capacitor current, page 148
i_d	Instantaneous synchronously rotating frame d axis current, page 44
$i^*_{k+1_{lpha/eta}}$	Reference instantaneous two phase stationary currents at the end of the control interval $kT_s \rightarrow (k+1)T_s$, page 72

$i_{k-1_{lpha/eta}}$	Sampled instantaneous two phase stationary currents at time $(k-1)T_s$, page 72
$i_{k_{lpha/eta}}$	Estimated instantaneous two phase stationary currents at time $kT_s, \ensuremath{page}\xspace$ 72
I_{pv_k}	Mean capacitor voltage for the $k{\rm th}$ H-Bridge over a fundamental period, page 64
K_I	Integral Gain, page 43
K_P	Proportional Gain, page 43
L	Connection inductance between CHB converter and the grid, page 45
N	Number of H-Bridge modules per phase, page 98
N_C	Number of capacitors in a flying capacitor multilevel converter, page 28
N_D	Number of diodes in a diode clamped multilevel converter, page 25
N_H	Number of H-Bridge cells per phase in a cascaded h-bridge multilevel converter, page 29
N_M	Number of half H-Bridge modules per arm in a modular multilevel converter, page 32
$N_{C_{bulk}}$	Number of bulk capacitors partitioning the DC bus in a multilevel converter, page 24
$N_{C_{clamp}}$	Number of clamping capacitors in the flying capacitor multilevel converter , page 27
N_{cell}	Number of cells in a flying capacitor multilevel converter, page 27
N_{pv}	Number of H-Bridge modules with PV arrays connected per phase, page 99
N_{sw}	Number of semiconductor devices in a multilevel converter, page 24

 $v_{j_{leg}}$

N_V	Number of voltage levels in a multilevel converter, page 24
P_{avg}	Average desired phase leg power, page 68
P_{grid}	Average power transferred to the grid over one fundamental period per phase, page 63
$P_{j_{leg}}$	Power component required to regulate the total voltage of the j th phase leg, page 67
P_j^*	Desired power for j th phase leg, page 67
P_{pv_j}	Sum of the incoming PV array power in the j th phase leg, page 67
P_{pv}	Average PV array power over one fundamental period, page 64
Q^*	Demanded reactive power, page 67
T_g	Length of the grid period, page 63
T_s	Length of the control period, page 46
T_{MPPT}	MPPT update period , page 123
V_0	RMS magnitude of the injected zero sequence voltage, page 81
V_k	Mean capacitor voltage for the $k{\rm th}$ H-Bridge over a fundamental period, page 64
$V_{caperror}$	Cumulative capacitor voltage regulation error, page 74
$v_{cap_{min}}$	Minimum capacitor voltage within a phase leg, page 74
v_{comb}	Voltage applied by a switching combination, page 74
$V_{conv}\left[0,T ight]$	Average converter voltage over the time interval from $0 \rightarrow T_s$, page 46
v_{conv}^{*}	Instantaneous reference converter voltage, page 74
$V_{grid_{av}}\left[0,T ight]$	Average grid voltage over the time interval from $0 \rightarrow T_s$, page 46
$v_{j_{leg}}$	Measured total voltage of the j th phase leg, page 68

$v^*_{j_{leg}}$	Desired total voltage of the j th phase leg, page 68
$v_{k+0.5_{lpha/eta}}^{sys}$	Predicted instantaneous two phase stationary grid voltages at time $(k + 0.5)T_s$, page 72
$v_{k+1_{lpha/eta}}^*$	Reference instantaneous two phase stationary converter voltages for the control interval $kT_s \to (k+1)T_s$, page 72
$v^{grid}_{k-0.5_{\alpha/\beta}}$	Sampled two phase stationary grid voltages at time $(k-0.5)T_s$, page 72
CHB	Cascaded H-Bridge multilevel converter, page 28
DCC	Diode Clamped Converter, page 22
DLL	Dynamic Link Library, page 161
EPLD	Electrically Programmable Logic Device, page 281
FCC	Flying Capacitor multilevel converter, page 25
FCS-MPC	Finite Control Set Model Predictive Control, page 49
HDL	Hardware Description Language, page 162
HVDC	High Voltage Direct Current, page 30
INC MPPT	Incremental Conductance Maximum Power Point Tracking, page 9
MMC	Modular Multilevel Converter, page 30
MPC	Model Predictive Control, page 48
MPP	Maximum Power Point, page 6
MPPT	Maximum Power Point Tracking, page 8
P&O MPPT	Perturb and Observe Maximum Power Point Tracking, page 9
PCI	Peripheral Component Interconnect, page 282
PS-P&O MPPT	Phase Shifted Perturb and Observe Maximum Power Point Tracking,

RC-MPPT	Ripple correlation Maximum Power Point Tracking, page 152
RCC	Ripple Correlation Control, page 152
RTX	Real Time Extension, page 286
TCP/IP	Transmission Control Protocol/Internet Protocol, page 287